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Abstract
The vertices of the four-dimensional polytope {3, 3, 5} and its dual {5, 3, 3}
admitting the symmetry of the non-crystallographic Coxeter group W(H4) of
order 14 400 are represented in terms of quaternions with unit norm where
the polytope {3, 3, 5} is represented by the elements of the binaryicosahedral
group of quaternions of order 120. We projected the polytopes to three-
dimensional Euclidean space where the quaternionic vertices are the orbits of
the Coxeter group W(H3), icosahedral group with inversion, where W(H3)×Z2

is one of the maximal subgroups of the Coxeter group W(H4). The orbits
of the icosahedral group W(H3) in the polytope {3, 3, 5} are the conjugacy
classes of the binary icosahedral group and represent a number of icosahedrons,
dodecahedrons and one icosidodecahedron in three dimensions. The 15 orbits
of the icosahedral group W(H3) in the polytope {5, 3, 3} represent the
dodecahedrons, icosidodecahedrons, small rhombicosidodecahedrons and
some convex solids possessing the icosahedral symmetry. One of the convex
solids with 60 vertices is very similar to the truncated icosahedron (soccer ball)
but with two different edge lengths which can be taken as a realistic model of
the C60 molecule at extreme temperature and pressure.

PACS numbers: 02.20.Bb, 21.60.Fw, 31.15.Hz

1. Introduction

The non-crystallographic Coxeter group W(H4) of order 14 400 generates interest [1–3] for
its relevance to the quasicrystallography as well as to its unique relation to W(E8) [4, 5], the
Weyl group of the exceptional Lie group E8 which seems to be playing an important role
in the superstring theory [6]. The Coxeter group W(H4) arises as the symmetry group of
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Figure 1. The extended Coxeter diagram of H4 with scaled quaternionic simple roots.

the polytope {3, 3, 5} [7], the vertices of which can be represented by 120 quaternions of the
binary icosahedral group [8, 9]. The dual of the polytope {3, 3, 5} is another polytope {5, 3, 3}
with 600 vertices [7, 8] which can be represented by quaternions.

In this paper, we study the projections of these polytopes in three dimensions using one of
the maximal subgroups of W(H4) [10]. The non-crystallographic Coxeter group W(H3)×Z2

is one of those five maximal subgroups of W(H4) where W(H3), of order 120, acts in three-
dimensional space and Z2 is the generator of the root of the Lie algebra A1 orthogonal to H3.
We organize the paper as follows. In section 2, we introduce the quaternionic root system of
H4 in which the roots of H3 are represented by imaginary quaternions. We also discuss the
120 embeddings of W(H3) in the group W(H4). In section 3, we construct the quaternionic
vertices of the polytope {5, 3, 3} and obtain the orbits of W(H3) as sets of quaternionic vertices
of the polytopes {3, 3, 5} and {5, 3, 3}. We plot the polyhedra corresponding to the orbits of
W(H3). Finally in section 4 we discuss our results regarding their relevance to other algebraic
structures.

2. Construction of the Coxeter groups W (H4) and W (H3) in terms of quaternions

Let q = q0 + qiei, (i = 1, 2, 3) be a real quaternion with its conjugate defined by q = q0 −
qiei where the quaternionic imaginary units satisfy the relations:

eiej = −δij + εijkek, (i, j, k = 1, 2, 3). (1)

Here δij and εijk are the Kronecker and Levi-Civita symbols and summation over the
repeated indices implicit. Quaternions generate the four-dimensional Euclidean space where
the quaternionic scalar product is defined as

(p, q) = 1
2 (p̄q + q̄p). (2)

The group of quaternions is isomorphic to SU(2) which is a double cover of the proper rotation
group SO(3). The imaginary quaternionic units ei can be related to the Pauli matrices σj by
ej = −iσj and the unit quaternion is represented by 2 × 2 unit matrix. The affine extension

of the Coxeter diagram H4 is depicted in figure 1. Here τ = 1+
√

5
2 , σ = 1−√

5
2 satisfy the

relations τσ = −1 , τ + σ = 1 , τ 2 = τ + 1 and σ 2 = σ + 1.
Deleting the second root from right one obtains the quaternionic roots of the root system

of H3 ⊕ A1 where the imaginary roots represent the simple roots of H3 and the quaternionic
unit −1 stands for the simple root of A1. Let us introduce the notations for the action of unit
quaternions on an arbitrary quaternion q. We define the pair of quaternions representing the
group elements of O(4) [5] as

[a, b] : q → q ′ = aqb [c, d]∗ : q → q ′′ = cq̄d. (3)

In this notation the generators of W(H3) × Z2 would follow from figure 1 as

[−e1, e1]∗,
[− 1

2 (τe1 + e2 + σe3),
1
2 (τe1 + e2 + σe3)

]∗
, [−e2, e2]∗, [−1, 1]∗. (4)

The first three generators generate the group elements [p, p̄] , [p, p̄]∗ = [1, 1]∗[p, p̄] with
p ∈ I , where I represents the binary icosahedral group of order 120 and the elements are
given in table 1. One can prove that the set of elements [p, p̄], p ∈ I is isomorphic to the
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Table 1. Conjugacy classes of the binary icosahedral group I represented by quaternions.

Conjugacy classes and Elements of conjugacy classes
order of elements (cyclic perm. of e1, e2, e3 must be added if not included)

1 1
2 −1

10 12+ : 1
2 (τ ± e1 ± σe3)

5 12− : 1
2 (−τ ± e1 ± σe3)

10 12′
+ : 1

2 (σ ± e1 ± τe2)

5 12′− : 1
2 (−σ ± e1 ± τe2)

6 20+ : 1
2 (1 ± e1 ± e2 ± e3),

1
2 (1 ± τe1 ± σe2)

3 20− : 1
2 (−1 ± e1 ± e2 ± e3),

1
2 (−1 ± τe1 ± σe2)

4 30 : ±e1,±e2,±e3,
1
2 (±σe1 ± τe2 ± e3)

icosahedral group A5, the even permutations of five letters and the generator [1, 1]∗ commutes
with [p, p̄] so that the group has the structure W(H3) ≈ A5 ×Z2. Since the generator [−1, 1]∗

commutes with the elements of the group W(H3) ≈ A5 × Z2, then the group W(H3) × Z2

has the structure

W(H3) × Z2 ≈ A5 × Z2
2 = {[p,±p], [p,±p]∗;p, p ∈ I } (5)

with 240 elements. The Coxeter group W(H4) of order 120 × 120 = 14400 can be generated
by reflections at hyperplanes perpendicular to its four simple roots which leads to the group
structure given as follows:

W(H4) = {[p, q] ⊕ [p, q]∗;p, q ∈ I }. (6)

It is clear that the group W(H4) is the symmetry group of the set of quaternions I which
represent the vertices of the polytope {3, 3, 5}. A simple construction of the quaternions of I
can be given as follows. Let us denote the elements of the binary tetrahedral subgroup of the
group I by the quaternions [11],

T = {±1,±e1,±e2,±e3,
1
2 (±1 ± e1 ± e2 ± e3)

}
(7)

which also represent the vertices of the polytope {3, 4, 3} [8] as well as the nonzero roots of
SO(8). Take any element p5 = ±1 of I, say, p = 1

2 (τ + e1 + σe3).

The set of quaternions
∑5

j,k=1 ⊕pjT p̄k constitutes the five copies of I [8]. Actually we

can write the elements of I in either form I = ∑5
j=1 pjT = ∑5

k=1 T p̄k . The five conjugate
groups of T in I can be represented by pjT p̄j , p ∈ I, (j = 1, . . . , 5). Now we discuss the
60 different embeddings of the group W(H3) × Z2 defined in (5) in the group. It is clear that
the group in (5) leaves the quaternionic unit vector ±1 invariant. The conjugate groups of
W(H3) × Z2 in (5) can be obtained by performing the group conjugations:

[a, b][p,±p][a, b]−1 = [apa,±bpb], (8)

[a, b][p,±p]∗[a, b]−1 = [apb, apb]∗. (9)

If we define q = ap̄ā in (8) and t = apb in (9) and let c = ab then the group elements in
(8) and (9) can be written as [q,±c̄q̄c] and [t,±ct̄c]∗, (q, t, c ∈ I ). Therefore without loss
of generality we represent the conjugate groups by

W(H3) × Z2 = {[p,±c pc], [p,±cpc]∗} (10)

where the element ±c is a fixed vector of I for each conjugate group but p is any element of I.
It is straightforward to check that the group in (10) leaves the vector ±c invariant. Since we
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have 60 different choices of ±c from I the group representation of W(H3) × Z2 in (10) is one
of those 60 different embeddings of W(H3) × Z2 in W(H4).

3. The orbits of W (H3) in the polytopes {3, 3, 5} and {5, 3, 3}
The vertices of the dual polytope {5, 3, 3} can be constructed from T ′, the dual of T that are
the quaternions [11]:

T ′ = {
1√
2
(±1 ± e1),

1√
2
(±e2 ± e3),

1√
2
(±1 ± e2),

1√
2
(±e3 ± e1),

1√
2
(±1 ± e3),

1√
2
(±e1 ± e2)

}
. (11)

The union O = T ⊕ T ′ is the binary octahedral group, and T ′/
√

2 not only represents
the short roots of the exceptional Lie algebra F4 but also constitutes the vertices of the dual
polytope {3, 4, 3} [11]. Now the vertices of the polytope {5, 3, 3} can be constructed as
follows:

{5, 3, 3} =
5∑

j,k=1

⊕pjT ′p̄k. (12)

Let t ′ ∈ T ′ be an arbitrary element of (11). One can show that T ′ = t ′T = T t ′. The set of
points

{3, 3, 5}j =
5∑

k=1

⊕pjT ′p̄k =
5∑

j=1

⊕pjT t ′T p̄k = pj t ′I (13)

{3, 3, 5}k =
5∑

j=1

⊕pjT ′p̄k =
5∑

j=1

⊕pjT t ′T p̄k = I t ′p̄k, (14)

each representing a copy of {3, 3, 5} in the polytope {5, 3, 3} so that the vertices of the dual
polytope can be written as

{5, 3, 3} =
5∑

j=1

⊕pj t ′I =
5∑

k=1

⊕I t ′p̄k. (15)

One can prove that the set of vertices of the polytope {5, 3, 3} is invariant under the
Coxeter group W(H4), the quaternionic representation of which is given in (6). To convince
the reader that the quaternions in (12) are the vertices of the dual polytope {5, 3, 3} we give
the following argument. The four quaternions of I

1, 1
2 (σ + e1 − τe2),

1
2 (σ + e2 − τe3),

1
2 (σ + e3 − τe1) (16)

form the vertices of a tedrahedron of the polytope {3, 3, 5} which consists of 600 tetrahedra
of this type. It is the reason that the polytope {3, 3, 5} is called 600-cell. Since the full
symmetry of a tedrahedron is isomorphic to the symmetric group S4 of order 24 and it can be
embedded in the Coxeter group W(H4),

120×120
24 = 600 ways the polytope {3, 3, 5} consists

of 600 tedrahedrons. The vertices of the dual polytope {5, 3, 3} are obtained by extending the
quaternions representing the centres of the tedrahedrons. When the average of the quaternions
in (16) is extended to the unit sphere S3, one obtains the quaternion 1

2
√

2
(σ 2 −τe1 −τe2 −τe3),

which can be written as the product of two quaternions—one from T ′ in (11) and the other
from I in table 1:

1
2
√

2
(σ 2 − τe1 − τe2 − τe3) = 1√

2
(1 + e1)

1
2 (σ − e1 − τe2) (17)

which is one of those quaternions in (12).
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Before we determine the orbits of W(H3) in the set of quaternions representing the
polytopes {3, 3, 5} and {5, 3, 3}, we discuss the intersection of the sphere S3 with the
hyperplane which can be represented by the equation

c0q0 + c1q1 + c2q2 + c3q3 = 1
2 (c̄q + q̄c) = d, (18)

where q is an arbitrary quaternion but c is a fixed quaternion. The equation of a hyperplane is
obtained as the scalar product of q with c. Since we have chosen our quaternions representing
the vertices of the polytopes as unit quaternions, they satisfy the equation

q2
0 + q2

1 + q2
2 + q2

3 = 1. (19)

The intersection of this S3 with the hyperplane in (18) is a quadric surface in general. In
the special case where c = 1 the quadric surface is a sphere S2 with radius

√
1 − d2. As d

varies we obtain a number of parallel hyperplanes intersecting with the sphere S3 leading to
different spheres S2 with various radii. Since we talk about the discrete points on the sphere
S2 they will represent the polyhedra or convex solids in general in three dimensions.

3.1. The orbits of W(H3) in {3, 3, 5}
The orbits of W(H3) in {3, 3, 5} are the conjugacy classes of the binary icosahedral group
I shown in table 1. The elements ±1 are single points not corresponding to any polyhedra.
However the vertices in the conjugacy classes 12± represent an icosahedron with the vertices

1
2 (±e1 ± σe3),

1
2 (±e2 ± σe1),

1
2 (±e3 ± σe2) (20)

with radius
√

2+σ
2 . Actually the set of quaternions in (20) represents two icosahedra each lying

in parallel hyperplanes with the values d = ± τ
2 . However in three dimensions, they coincide.

Similarly the set of imaginary quaternions in the conjugacy classes 12′
± with the vertices

1
2 (±e1 ± τe2),

1
2 (±e2 ± τe3),

1
2 (±e3 ± τe1) (21)

represent two icosahedra with the radii
√

2+τ
2 for d = ± σ

2 . The imaginary quaternions in the
conjugacy classes 20± with 20 vertices

1
2 (±e1 ± e2 ± e3),

1
2 (±τe1 ± σe2),

1
2 (±τe2 ± σe3),

1
2 (±τe3 ± σe1) (22)

represent two dodecahedra with the radius
√

3
2 where d = ± 1

2 . The imaginary quaternions in
the last conjugacy class 30 represent the 30 vertices of an icosidodecahedron with radius 1.

3.2. The orbits of W(H3) in {5, 3, 3}
There are 15 orbits of W(H3) in the polytope {5, 3, 3}. Seven of them are in pairs with varying
±d and one with d = 0. Before we discuss all the orbits one by one we note three special
orbits with d = 0 and d = ± 1√

2
. The subset of quaternions from (12)

5∑
j=1

⊕pjT ′p̄j (23)

lies in three orbits as we will explain below. When we look at the quaternions of T ′ in (11) we
see that they can be classified with respect to their scalar values

(
Sc q = 1

2 (q+q̄) = q0
)

as ± 1√
2

and zero. Since the sum in (23) does not change Sc q of the quaternions we can classify them
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as the quaternions with Sc q equal to zero, 1√
2

and − 1√
2
. Twelve of the quaternions in (11)

are with Sc q = 0 and those sets with Sc q = ± 1√
2

each constitutes a set of six quaternions.

Therefore, the sets of quaternions in (23) are 60 with Sc q = 0, 30 with Sc q = ± 1√
2
. The

group W(H3) preserves these structures as it does not change Sc q.

3.2.1. Orbits with q0 = 0. The 60 vertices of the orbit of W(H3) with Sc q = 0 are given by{
1√
2
(±e1 ± e2),

1
2
√

2
(±e1 ± τ 2e2 ± σ 2e3),

1
2
√

2
(±(τ − σ)e1 ± σe2 ± τe3)

}
+ cyclic permutation of e1, e2, e3. (24)

These vertices constitute a convex solid (not even classified among the semi-regular polyhedra)
with two edge lengths, 12 pentagonal, 20 triangular and 30 rectangular faces. The widths of
the rectangles are the edges of the pentagons and the lengths of the rectangles are the sides of
the triangular faces. The length to the width ratio of the rectangle is l

w
= τ 2. It is depicted in

figure 2(a).

3.2.2. Orbits with q0 = ± 1√
2
. The projection of the polytope on the hyperplanes with

q0 = ± 1√
2

results in the quaternionic vertices:

{± 1√
2
e1,± 1√

2
e2,± 1√

2
e3,

1
2
√

2
(±e1 ± σe2 ± τe3)

}
+ cyclic permutation of e1, e2, e3. (25)

These are the 30 vertices of the icosidodecahedron (one of those Archimedean solids) with
60 edges, 12 pentagonal and 20 triangular faces. All the edges are equal. Actually we have
two polyhedra here: one in the hyperplane with q0 = 1√

2
and the other in q0 = − 1√

2
. The

circumscribed radius is 1√
2

and it is shown in figure 2(b).

3.2.3. Orbits with q0 = ± 1
2
√

2
. The polytope {5, 3, 3} has the following vertices on the

hyperplanes q0 = ± 1
2
√

2
:

{
1

2
√

2

( ± σ 2e1 ± τ 2e2
)
, 1

2
√

2

( ± e1 ± e2 ± (τ − σ)e3
)
, 1

2
√

2
(±σe1 ± 2e2 ± τe3)

}
+ cyclic permutation of e1, e2, e3. (26)

This is also a convex solid with 60 vertices and two different lengths of 90 edges also
having 12 pentagonal faces and 20 non-regular hexagons. Its circumscribed radius is

√
7
8 .

Non-regular hexagons consist of two different lengths where the longer edges are shared with
the pentagons and the shorter ones are shared among the non-regular hexagons. The ratio of
the longer edge to the shorter one is the golden ratio τ ∼= 1.618. That would be the ideal
model for C60 molecule if this ratio would be smaller. We know that the double C bond
length is smaller than the single C bond length in the C60 molecule. The soccer ball model of
C60 is not perfect as the edge lengths are equal in the truncated icosahedron. Since the bond
lengths in the C60 molecule change with the pressure and the temperature, the molecule may
change its shape between the soccer ball model and the model at hand. Its shape is depicted in
figure 2(c).

3.2.4. Orbits with q0 = ± τ

2
√

2
. The projection of the polytope {5, 3, 3} on the hyperplanes

q0 = ± τ

2
√

2
has a similar shape as above solid except the short and the long edges are

interchanged. The ratio of the longer to the shorter edge is again the golden ratio τ . It has
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Figure 2. Ployhedra projected from the polytope {5, 3, 3} as orbits of W(H3).

(This figure is in colour only in the electronic version)

60 vertices, 90 edges, 12 pentagonal and 20 non-regular hexagonal faces. Its circumscribed
radius is

√
7−τ

8 .The vertices are given by the quaternions{
1

2
√

2
(±σe1 ± (τ − σ)e2),

1
2
√

2
(±e1 ± 2e2 ± σe3),

1
2
√

2
(±σ 2e1 ± τe2 ± τe3)

}
+ cyclic permutation of e1, e2, e3. (27)

Its shape is shown in figure 2(d).

3.2.5. Orbits with q0 = ± σ

2
√

2
. This is a semi-regular polyhedron, which also has

60 vertices, 90 edges, 62 faces (12 pentagonal, 20 triangular, 30 square). It is known as
the small rhombicosidodecahedron. Its circumscribed radius is

√
6+τ

8 . Its vertices are given
by the quaternions:{

1
2
√

2
(±(τ − σ)e1 ± σe2),

1
2
√

2
(±2e1 ± e2 ± τe3),

1
2
√

2
(±σe1 ± σe2 ± τ 2e3)

}
+ cyclic permutation of e1, e2, e3. (28)

Its shape is shown in the figure 2(e).

3.2.6. Orbits with q0 = ± τ−σ

2
√

2
. This is a regular dodecahedron with 20 vertices, 30 edges and

12 pentagonal faces. Its circumscribed radius is
√

3
8 . Its vertices are given by the quaternions:{

1
2
√

2
(±τe1 ± σe2),

1
2
√

2
(±e1 ± e2 ± e3)

}
+ cyclic permutation of e1, e2, e3. (29)

Its shape is shown in figure 2(f ).

3.2.7. Orbits with q0 = ± τ 2

2
√

2
. Here we have two more dodecahedra with the vertices:{

1

2
√

2
(±e1 ± σ 2e2),

σ

2
√

2
(±e1 ± e2 ± e3)

}
+ cyclic permutation of e1, e2, e3. (30)

It has the same shape as in figure 2(f ). Its circumscribed radius is 1
τ

√
3
8 . Its vertices can

be obtained from those in (27) by multiplying them by ±σ . It is the reduced version of the
dodecahedron discussed above.
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3.2.8. Orbits with q0 = ± σ 2

2
√

2
. The dodecahedra here is the rescaled versions of the

dodecahedra with the vertices given in (27). The vertices here are the ±τ times those in (27).

The circumscribed radius is τ

√
3
8 .

{
1

2
√

2
(±τ 2e1 ± e2),

τ

2
√

2
(±e1 ± e2 ± e3)

}
+ cyclic permutation of e1, e2, e3. (31)

4. Conclusion

We have used the subgroup W(H3) of the Coxeter group W(H4) to project the four-dimensional
polytopes {3, 3, 5} and {5, 3, 3} in three dimensions. The vertices of the convex solids in three
dimensions are the orbits of the Coxeter group W(H3). One of the convex solid is very similar
to the truncated icosahedron but with two different edge lengths. Since the C60 molecule
displays different bond lengths at different pressure and temperature, we anticipate that the
convex solids obtained in the hyperplane q0 = ± 1

2
√

2
could be used as a model of C60 at some

extreme temperature and pressure. This solid with 60 vertices and the truncated icosahedron
may correspond to two extreme models of the C60 molecule where the soccer ball model
corresponds to equal length bonds and that we discussed gives the ratio of the single bond to
double bond lengths as the golden ratio τ .

We also know that the Coxeter group W(H4) is one of the maximal subgroups of the
Weyl group W(E8). The quasi-lattice structure of H4 can be embedded in the E8-lattice. The
projection of the E8-lattice to the four-dimensional Euclidean space via W(H4) and then to
three-dimensional Euclidean space by the Coxeter group W(H3) may yield a rich structure
of convex solids some of which, as we have already seen, may correspond to regular and
semi-regular polyhedra.
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